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Triplet order parameter of the triangular Ising model 
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Buildings, Mayfield Road, Edinburgh EH9 332, UK 

Received 30 April 1975 

Abstract. We consider the usual king model with pair interactions between nearest- 
neighbour spins U on the triangular lattice. We evaluate the correlation M, = (u1u2u3),  
where u l ,  u 2 ,  u3 are the three spins at the vertices of a triangular face. This can be thought 
of as an order parameter associated with a three-spin ‘field’. It vanishes at and above T,, and 
has a critical exponent of 4. 

1. Introduction 

There has recently been an interest in statistical mechanical lattice models with multi- 
spin interactions. This is due in part to the unusual behaviour of the eight-vertex model 
(Baxter 1972), which has continuously varying critical exponents and can be thought of 
as an Ising model with two- and four-spin interactions (Wu 1971, Kadanoff and Wegner 
1971). 

Wood and Griffiths (1972) considered an king model on the triangular lattice, with 
both pair interactions between nearest-neighbour sites i and j ,  and triplet interactions 
between spins at the vertices i , j ,  k of a triangular face. Including also a magnetic field H, 
the Hamiltonian of this model is 

where the first summation is over all N sites of the lattice (ie i = 1 , .  . . , N ) ,  the second 
over all 3N edges, and the third over all 2N triangular faces. 

The partition function Z and free energy per site f are then given by 

where p = l/kT is the Boltzmann factor, Tis the temperature, and the summation in (2) 
is over all values f 1 of the N spins oi. 

The free energy of the model can be evaluated exactly when any two of H, J ,  J’  are 
zero. In particular, when H = J = 0 we have the pure three-spin model, the free energy 
of which was obtained by Baxter and Wu (1973, 1974). In this case H and J can be re- 
garded as ‘fields’ and very plausible conjectures have recently been obtained for the 
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corresponding zero-field spontaneous order parameters, using series expansions 
(Baxter et a1 1975). 

The other interesting limiting case, the one considered here, is when H = J’ = 0. 
We then regain the normal two-spin triangular Ising model, for which the free energy, 
spontaneous magnetization, and neai st-neighbour correlation are of course known 
(Houtappel 1950, Husimi and Syozi 1950, Wannier 1950, Potts 1955, Green 1963, 
Stephenson 1964). 

However, this approach introduces a new order parameter for the two-spin model. 
We can now regard J, as a field and define an associated ‘three-spin spontaneous magnet- 
ization’ M ,  by 

J ’ - 0  
(4) 

where the limit is taken through positive values of J’. From the above it is readily seen 
that 

M3 = (cicjck)r 

where i, j ,  k are the three vertices of a triangular face. 
From the spin-reversal symmetry we expect M ,  to be zero at temperatures above the 

critical temperature T,  , while from series expansions we expect it to be positive below T,  . 
Thus it behaves similarly to the normal magnetization M associated with the field H .  

It is therefore interesting to calculate M , ,  and we do this in the following sections. 
In these we allow J to have different values in each of the three directions of edges of the 
lattice. The full result is given in equation (62), but here we remark that for the isotropic 
case we obtain 

[ l + u  2( 1 + 3 u ) ” ”  
M 3 = M  3-- ~ 

i - u  ( 1 + 4 3  

where 

U = exp( - 4pJ), 

and M is the usual single-spin spontaneous magnetization, given by 

M = (  
( 1 - U),( 1 + 3 ~ )  

As T increases from 0 to T,  , U increases from 0 to i. Thus at T,  

M , / M  = 0.803847.. . , (7) 
so M ,  has the same critical exponent as M ,  ie 8 .  

The result (5) provides a useful check on the series expansion for the general problem, 
where H ,  J ,  J‘ are all nonzero (Sykes and Watts 1975). This problem has of course not 
been solved exactly. 

2. Determinant expression for M ,  

We use the notation of Stephenson (1964, to be referred to as S). Draw the triangular 
lattice as in figure 1 and let - J ,  , - J 2 ,  - J ,  be the three nearest-neighbour interaction 
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i 
Figure 1. The triangular lattice, showing the labelling of sites and the directions in which the 
interactions J,, J , ,  J 3  apply. 

energies, as indicated. Define W, to be the ratio of two correlations as follows : 

(8) 9, = ~ ~ O , O u l , O ~ l , l u n . n ~ / ~ ~ l , l ~ n . n ~ .  

In the limit of n large we expect these Correlations to factor, giving 

lim 9, = M,/M, 
n+m 

(9) 

where 

Thus M3 is our required order parameter and M is the usual spontaneous magnetization, 
given by equation (7.13) of S. 

We can evaluate the correlations in (8) by Pfaffians, using the techniques of Q 3 of S. 
To evaluate the four-spin correlation we perturb the horizontal dimer between sites 
(0,O) and (1,0), and all the diagonal dimers between (1, 1 )  and (n, n). This gives 

M = ( ~ 1 , ~ ) ~  M3 = (~0,0~1,0~1,1). (10) 

<~o,ocl,o~l,l~n,J = ~iG-l(IY-l+QI lyO1’z, (11) 

where 
v i  = tanh(J,/kT), i = 1,2,3, (12) 

and if ti = t’; - v i ,  then 

O \  
0 t l  0 

- t 1  0 0 0 

0 0 t 3 z  0 

Y = [  0 0 0 -t3l 

\ -x3 -xq -9 O /  
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Both matrices y and Q are 2n x2n, Z in (13) is the unit n -  1 xn-  1 matrix, while in (14) 
p is the scalar, xl, . . . , x4 are (n - 1)-dimensional vectors, and S is a square n - 1 x n - 1 
matrix. Their elements are 

P = [LOIrt 

b 1 I u  = [a, a],, 

h), = [a, a + Il l ,  

Su,fl = [ /?-a+l , /? -a+l ] , ,  

where a, /? = 1 , .  . . , n - 1 and the right-hand side has the same meaning as in equation 
(4.2) of S .  

We have used the antisymmetry of Q and the vanishing of [a, a],, and [a, a],, (equation 

The two-spin correlation ( O ~ , ~ O , , ~ )  is also given by the right-hand side of (ll), but 

It is trivial to evaluate bl and y -  l .  We can simplify b- ' + Ql by using the general 

(4.4) of S) .  

with u1 and the first two rows and columns ofy and Q deleted. 

identity 

This is true for any square matrices A ,  D. Here A is 2 x2, D is 2n - 2 x2n - 2. From (8), 
(1  l),  (1  3), (14) we obtain 

From (6.4 and 9) of S, with 1 + U :  corrected to 1 -U:, it follows that 

B = (u3t3)- ' A ,  (19) 

Auq0 =  US-^ = ~ 3 8 ~ , ~ + ( 1 - ~ : ) [ ~ - ~ + 1 , / ? - ~ + 1 ] , ~ .  (20) 

where A is the n - 1 xn - 1 Toeplitz matrix with elements 

From equations (6.12) and (5.13) of S 

a, = (2n)- J:n e-'""'A(w) do ,  

where 

Except at T,, A(w) has no branch-points on the real w axis. It is to be chosen to be 
single-valued and continuous on the real w axis, and to be positive when o = n. 
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It remains to give explicit expressions for the first five matrix elements on the right- 
hand side of (1 5 ) .  From (4. I), (4.2) and (2.12) of S 

where 

A(41, 4 2 )  = (1 + ~ : ) ( l +  ~ : ) ( l  +U:) + 8 ~ 1 0 2 ~ 3  - 2 ~ , ( l -  ~ : ) ( l  -U:) COS 91 
-2u2(1 -u:)(l-u:)cos 4 2 - 2 ~ 3 ( 1 - ~ ~ ) ( 1 - ~ ~ ) c o s ( 4 1  +&) (25) 

and from the appendix of S 

CIr (4 , ,  42) = (1-u~)(l-u:)-4u2u3 ei"-ul e '+~[( l+u~)( l+u:)  

+ ~ U ~ ( ~ - U ~ ) C O S ( ~ ~  +42)+2u2(l-u:)cos 4 ~ ~ 1 ,  (26) 

+ [u1u3(1 +u:)+2u2] e-i92 + u3(1 -U:) exp[ -i(41 + 42)] 
+ u l (  1 - U : )  eibl, (27) 

+ ( ~ ~ + 2 ~ ~ u ~ + u ~ ~ : ) e x p [ - i ( 4 ,  +42) ]+ (u1  + ~ U ~ U ~ + U ~ U : ) ~ - ' @ ' .  (28) 

Csr(41542) = -CtL-41, - 4 2 )  = -1 -0 : -2~1~ ,~ ,  

C J 4 1 3 4 2 )  = Ctr(-41> - 4 2 )  = - ( 1 - ~ : ) + ~ l ~ 3 ( l - u : ) e x p [ - i ( 2 ~ l + ~ z ) ]  

Following Stephenson, equation (4.7), we make the substitutions 4, = U+& 

42 = - 6. We then perform the 0 integrations in each of the required integrals (24) by 
calculating the residues of poles inside the unit circle in the complex exp(i0) plane. 
After some considerable algebra we find the results can be expressed as 

1 P = Lr [--+-D(-w)+(l-r:)L'(w)R(w) 1 v2 do ,  2R -" 01 U1 
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Note that in the interesting case u 1  = u 2 ,  D(o) has a simple pole at o = E. Neverthe- 
less all the integrands in (29) and (30) are analytic on and about the real axis in the o 
plane. In our subsequent analysis we take care not to separate out terms which have this 
potential pole. 

We now have explicit integral expressions for p and the elements of x l , .  . . , x4, A .  
Thus we can in principle calculate 9, from (17) and (19). The chief difficulty is the inver- 
sion of the matrix B, or A .  However, it turns out that we can handle the desired limit 
n -, x , as we show in the next section. 

First we perform some algebraic manipulations to simplify the expression for 9,. 
Substituting the expressions (30) and (19) into (17), we obtain 

9, = u,-(l-U:)p+ X(o, o’)s,(w, o’) d o  do’, (37) 
4E2 

where 

and m(o) is an (n - 1)-dimensional vector, with elements 

m,(o) = e-iaa, a = 1, . . . ,  n - 1 .  (40) 

Now we look at the integral (29) for p ,  and replace the integrand f ( w )  by its even part 
%f(o)+f( --a)). Using (34), (36), A ( w ) A ( - o )  = 1 ,  and the identity 

(JJ: - y;)D(w)D( - O) = ( 1 - U:) [ 1 - ~ 2 (  1 - U : )  (D( W) + D( - CO))], (41) 

we find that the integrand is the sum of three analytic parts : those terms containing a 
factor D(o), those containing D( -U), and those containing neither. Negating o in the 
second, we obtain 

From (38), (31), (34) and (35) we find that 

where we have written A ,  A‘ for A ( o ) ,  A(”), and similarly for D. 
The right-hand side of (43) separates into two analytic parts : one composed of all 

terms containing a factor D, the other a factor D‘. Substituting into (37) and inter- 
changing o, o’ in the second part of X, we obtain 

where p is given by (42). 
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s,(w, w') = - [AI- 1 

3. me limit n + 00 

a. a - ,  . . .  z - l  
a,  a, . . .  a-,,, z - ~  
. 

z1  - n  
u , , - ~  an.-l . . .  a0 

0 z1-1 f - 2  . . .  zll - n  

From (44) we see that 9, depends on n only via the function s,(w, w') defined by (39). 
Setting 

(45) z' = z = e'", 

using the identity (16) and re-arranging, the definition (39) can be written as 

The integrand in (44) is analytic in some strip surrounding the real axis in the w and 
0' planes. Thus there exists a positive c such that we can replace the contour of inte- 
gration by the line interval ( -  ic - n, - ic +n). Both z and z' are then of modulus greater 
than one, and we expect s,(w, 0') to tend to a limit as n -+ C O .  

Grenander and Szego (1958, pp 40 and 51) have evaluated this limit for the case when 
the matrix A is Hermitian. Unfortunately this condition is not satisfied here, but the 
required generalization of their result appears to be the following. 

Let A be any (n -  1) x ( n -  1) Toeplitz matrix with elements as-. such that the series 
n - 

A(w) = 2 eiuoau 
U = - m  

(47) 

is absolutely convergent in some strip containing the real axis in the w plane, and In A(w) 
is analytic and periodic of period 2n in this strip. Define G(w), H(w) such that 

A(w) = G(o)H(w),  (48) 

where G(w) and l/G(o) ( ( H ( o )  and l /H(w))  are bounded, analytic and nonzero on the real 
axis and in the upper (lower) half-plane. (This is a Wiener-Hopf factorization-it is 
unique to within a multiplication constant.) Define sn(w,w') by (46). Then provided 
U, U', both have a negative imaginary part, 

lim s,(w, U') = [(zz' - l)H(w)G( - a')]- l ,  (49) 
n-3o  

From (22), our function A(w) can be factored into the form 

For T < T, ,  both c1 and c2 can be chosen to be positive and less than one. It follows that 
A(w) satisfies the conditions of the above theorem, and by inspection we see that 
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Taking the limit n + x ,  substituting the result (49) into (44), and using (48), (52), the 
integrand in (44) becomes 

(zz ' -  l)- 'D(y,A-y,)  [: ----+U, ; (A 4 1 3  (53) 

where D = D ( o ) ,  G = G(w), G' = G(w'), etc. 
We now use (45) to transform the of integration to an integration round a circle C in 

the z' plane. Due to our change of contour, this circle is slightly larger than the unit 
circle, and the pole of the integrand at z' = z- ' lies inside C. 

The terms containing H' in (53) are analytic on and outside C ,  and their contribution 
to the z' integrand tends to zero like z ' -  ' as z' -, YI . They therefore give zero contribution 
to the integral. 

The terms containing G' in (53) are analytic inside and on C, except for simple poles 
at z' = z - ' ,  0. Their integrals can therefore be evaluated by the calculus of residues, 
giving (using (48) and (52)) 

The integrand in (54) is analytic on and near the real axis, so we have shifted the contour 
of integration in the w plane back to the real axis. 

Using now the expression (42) for p ,  we find that the terms containing a factor A - ' + u j  
cancel. This is extremely fortunate, for these are the only terms we cannot integrate using 
elementary functions. We are left with (using (48)) 

1 -u:  a, = H u l  + U ; ' ) -  J' D ( y 2 H +  u3y2G - y ,G-  - u3y1H- ') dw. 
471Ul(l -0:) - n  

( 5 5 )  

The terms containing H in (55) are meromorphic functions of z outside the unit circle 
(including the point at  infinity), while those containing G are meromorphic within the 
unit circle. Thus each term can be integrated by using the calculus of residues, giving 

where Go is the value of G ( o )  at the pole of D(o). (If necessary, we deform the contour 
of integration in the z plane so as to enclose this pole.) Thus from (33) and (51), 

u , ( l  - U ; ) +  c1u2(l  - u l )  
u,(l-u:)+c,u,(l-~:) 1 l i 2  

G o =  ( 
From (22) and (50), c1 and c; are the roots of the quadratic equation 

C X 2 - a X + b  = 0. 

Hence, using (23), 

(57) 

c1/c2 = b/c = 0:. (59) 

Eliminating c2 between (57) and (59), we can write c1 as a bilinear function of G i .  
Substituting this expression into ( 5 8 ) ,  we obtain a quadratic equation for G i .  After 
some algebra, we find this equation can be written as 

(y2Go - ~ 3 ~ 1  G, ')' = ~ V : U : (  1 - U:)'. (60) 
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By considering the limit u1 -, 1 and using continuity arguments, we can verify that 
the correct solution of (60)  is given by 

y , G o - u 3 y l G ~ ’  = 2 u 1 u Z ( l - ~ ~ ) .  (61)  

Taking the positive root of this equation for Go and substituting into (56) ,  we finally 
obtain (using (32))  

a, = ~ u l + u ; ’ + u 2 + u ; ’ + u 3 + u ; * )  

- & t . 1 ~ 2 0 3 ) - ~ [ ( 1  + u ~ u ~ u ~ ) ( u I  + V ~ U ~ ) ( U Z + U ~ U ~ ) ( U ~  + u ~ u , ) ] ” ’ .  (62)  

Together with (9), this gives the ‘three-spin magnetization’ M ,  for the anisotropic 
triangular lattice. It is of course a symmetric function of u l ,  U , ,  u j .  The result ( 5 )  for 
the isotropic lattice follows by setting u 1  = U, = U ,  = tanh(J/kT). 

4. Three-spin correlation on the square lattice 

Another interesting case is the limit when 5, = u3 = 0. From figure 1 ,  the diagonal 
interactions then disappear and M 3  becomes a three-spin correlation round a corner of 
the square lattice. From (9) and (62)  we obtain 

where ui = exp( - 4 p J i )  and M is the usual magnetization of the square lattice. Other 
three-spin correlations have been evaluated by Pink (1968). 
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